Students can Download Class 7 Maths Chapter 13 Exponents and Powers Ex 13.2 Questions and Answers, Notes Pdf, KSEEB Solutions for Class 7 Maths helps you to revise the complete Karnataka State Board Syllabus and to clear all their doubts, score well in final exams.
Karnataka State Syllabus Class 7 Maths Chapter 13 Exponents and Powers Ex 13.2
Question 1.
Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38
(ii) 615 ÷ 610
(iii) a3 × a2
(iv) 7x × 72
(v) (52)3 ÷ 52
(vi) 25 × 55
(vii) (a4 × b4)
(viii) (34)3
(ix) (220 ÷ 215) × 23
(x) 8t ÷ 82
Solution:
(i) 32 × 34 × 38 = 32+4+8 = 314
[using the law am × an = am+n
(ii) 615 ÷ 610 = 615-10 = 65
[using the law am ÷ an =am+n]
(iii) a3 × a2 = a3+2 = a5
[using the law am x an = am+n]
(iv) 7x × 72 = 7x+2 = 7x+2
[using the law am x an = am+n]
(v) (52)3 ÷ 53 = 52×3 + 53
[using the law (am)n = amn] = 56 ÷ 53
[using the law am ÷ an = am+n] = 56-3 = 53
(vi) 25 × 55 = (2 × 5)5 – 105
[using the law am × am = (ab)m]
(vii) a4 × b4 = (a × b)4 = (ab)4
[using the law (am × bm) (ab)m
(viii) (34)3 = 34×3 = 312 [using (am)n = amn ]
(ix) (220 ÷ 215) × 23
220-15 × 23 = 25 × 23
[using the law am ÷ an = am-n
25 × 23 = 25+3 = 28
[using the law am × am = am+n
(x) 8t ÷ 82
8t-2 = 8t-2 [using am ÷ an = am-n
Question 2.
Simplify and express each of the following in exponential form:
(i) \(\frac{2^{3} \times 3^{4} \times 4}{3 \times 32}\)
Solution:
(ii) ((52)3) × 54) ÷ 57
(56 × 54) ÷ 57 ⇒ 56+4 ÷ 57
= 510 ÷ 57 = 510-7 = 53
Hence [(52)3 × 54] + 57 = 53
25 = 52
(iii) 254 ÷ 53
(52)4 ÷ 53
= 58 + 53= 58-3 = 55
Hence 254 ÷ 53 = 55
(iv)\(\frac{3 \times 7^{2} \times 11^{8}}{21 \times 11^{3}}\)
Solution:
(v) \(\frac{3^{7}}{3^{4} \times 3^{3}}\)
Solution:
Hence, \(\frac{3^{7}}{3^{4} \times 3^{3}}\) = 1
(vi) 2°+ 3°+ 4°
Solution:
1 + 1 + 1 = 3
Hence, 2°+ 3°+ 4° = 3
(vii) 2° × 3° × 4°
Solution:
1 × 1 × 1 = 1
Hence, 2° × 3° × 4° = 1
(viii) (3° + 2°) × 5°
Solution:
(1 + 1) × 1 = 2 × 1 = 2
Hence, (3°+ 2°) × 5° =2
(ix) \(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}\)
Solution:
(x) \(\left(\frac{a^{5}}{a^{3}}\right)\) × a8
Solution:
(xi) \(\frac{4^{5} \times a^{8} b^{3}}{4^{5} \times a^{5} b^{2}}\)
Solution:
a5 – 5 × a8 – 5 × b3 – 2 = 40 × a3 × b
= 1 × a3b = a3b
Hence, \(\frac{4^{5} \times a^{8} b^{3}}{4^{5} \times a^{5} b^{2}}\) = a3b
(xii) (23 × 2)2
Solution:
(23 + 1)2 = (24)2 = 24 × 2 = 28
Hence, (23 × 2)2 = 28
Question 3.
Say true or false and justify your answer:
(i) 10 × 1011 = 10011
Solution:
False: 10 × 1011 = 1012 and 10011 = 1022
(ii) 23 > 52
Solution:
False: Since 23 = 8, 52 = 25 and 8 < 25
(iii) 23 × 32 = 65
Solution:
False: 65 = 25 × 35
(iv) 3° = (1000)°
Solution:
True: 3° = 1 and (1000)°= 1
Question 4.
Express each of the following as a product of prime factors only in exponential form:
(i) 108 × 192
(ii) 270
(iii) 729 × 64
(iv) 768
Solution:
(i) 108 × 192
108 = 22 × 33
192 = 26 × 3
Hence, 108 × 192
= 22 × 33 × 26 × 3
= 28 × 34
(ii) 270
2 × 33 × 5
(iii) 729 × 64
729 = 36
64 = 26
Hence,
729 × 64 = 36 × 26
= (3 × 2)6 = 66
(iv) 768
28 × 3
Hence,
768 = 28 × 3
Question 5.
Simplify:
(i) \(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\)
Solution:
(ii) \(\frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}}\)
25 = 52 ⇒ 10 = 5 × 2
103 = 53 × 23
(iii) \(\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}\)
25 = 52 ⇒ 65 = (3 × 2)5 = 35 × 25
105 = (5 × 2)5 = 55 × 25
Solution:
= 35 – 5 × 55 + 2 – 7 × 25 – 5
= 3° × 5° × 2°
= 1 × 1 × 1 = 1
Hence, \(\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}\) = 1