Students can Download Basic Maths Question Bank Chapter 5 Partial Fractions Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and to clear all their doubts, score well in final exams.
Karnataka 2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions
2nd PUC Basic Maths Partial Fractions Two Marks Questions and Answers
I. Type:-Resolve the following into Partial fractions:
Question 1.
\(\frac{3 x+5}{(x+2)(x – 3)(x+1)}\)
Answer:
3x + 5=A(x – 3)(x + 1) + B(x + 2)(x + 1) +C(x + 2) (x – 3)
Put x = -, we get the value A
– 6 + 5 = A (-2 -3) (-2 + 1) + 0 + 0
-1 = A (-5) (-1) ⇒ A = \(\frac{-1}{5}\)
Put x = 3, we get the value of 13
9 + 5 = A(0) + B(3 + 2) (3 + 1) + C(0)
14 = B(5)(4) ⇒ 14 = 20 ⇒ \(B=\frac{14}{20}=\frac{7}{10}\)
Put x = – 1, we get the value.of C
(3(-1) + 5) = A(0) + B(0) + C(-1 +2) (-1-3)
– 3 + 5 = C (1) (-4)
Question 2.
\(\frac{1}{x\left(x^{2}-9\right)}\)
Answer:
Let
\(\frac{1}{x(x+3)(x-3)}=\frac{A}{x}+\frac{B}{x+3}+\frac{C}{x-3}\) ……….. (1)
1 = A(x + 3) (x – 3) + B x(x – 3) + (x (x + 3)
Put x = 1 we get A
1 = A (0 + 3) (0 – 3) + B 0(0 – 3) + C 0 (0 + 3)
1 = – 9A + 0 + 0
⇒ \(A=\frac{1}{-9}\)
Put x = 3
1 =A(3 + 3)(3 – 3) + B(3) (3 – 3 ) + C(3 (3 + 3)
1 =A(0) + B(0) + C(18)
⇒ \(C=\frac{1}{18}\)
Put x = -3
1 = A(-3 + 3) (- 3 – 3) + B (-3) (-3 -3) + C (-3) (-3 + 3)
1 = A (0) + B(- 3) (-6) + C(0)
1 = 18 B ⇒ \(B=\frac{1}{18}\)
Question 3.
\(\frac{5 x^{2}-19 x-18}{x(x+3)(x-2)}\)
Answer:
Let
Put x = -3
5(-3)2 – 19 (-3) -18= A(-3 + 3) (-3 -2) + B (-3) (-3 -2) + C (-3) (-3 + 3)
5.9+ 19.3 – 18 = A(0) + B(-3)(-5) + C(0)
84 = 15B ⇒\(B=84 / 15=\frac{28}{5}\)
Put x = 2
5 (2)2 – 19 (2) – 18 = A (2 + 3) (2 – 2) + B (2) (2 – 2) + C(2) (2 + 3)
20 – 38 – 18 = A(+0) + B(0) + C(2) (5)
-36 = 10C ⇒ \(C=\frac{-36}{10}=\frac{-18}{5}\)
Put x = 0
5(0)2 – 19(0) – 18 = A (0 + 3) (0 – 2) + B0 (0 – 2) + ((0) (0 + 3))
– 18 = A-6 + 0 + 0
– 18 = -6A
\(A=\frac{-18}{-6}\)
A = 3
Question 4.
\(\frac{x-3}{(x-1)\left(x^{2}-4\right)}=\frac{x-3}{(x-1)(x-2)(x+2)}\)
Answer:
Let \(\frac{x-3}{(x-1)(x-2)(x+2)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x+2}\)…….(1)
(x – 3) = A(x – 2) (x + 2) +B(x -1) (x +2) +C(x -1) (x -2)
Put x = +1, we get
(x – 3) A (x – 2)(x + 2)+ B(x – 1)(x + 2)+C(x – 1)(x – 2)
Put x+1,we get
(1 – 3)=A(+1 – 2)(1 +2)+B(1- 1)(1 +2)+C(1-1)(1 – 2)
– 2 = A(-1) (3)+B(O)+C (O)
-2 = – 3A
⇒ \(A=\frac { 2 }{ 3 } \)
Put x = 2,we get
2 – 3 =A(2 – 2)(2 + 2)+ 8(2 – 1)(2 + 2)+C(2 – 1)(2 – 2)
– 1 = A (O) + B( 1) (4) + C (O)
– 1 = 4B
⇒ \(B=\frac { -1 }{ 4 } \)
Put x = – 2 we get
-2 – 3 = A(-2 -2) (- 2 + 2) + B (- 2 – 1) (-2 + 2) + C(-2 – 1) (-2 – 2)
5 = A (0) + B (0) + C (-3) (- 4)
– 5 = 12C
⇒ \(C=\frac { -5 }{ 12 } \)
Put x = 1
5.1 + 3 = A(0) + B (1) (1 + 1) + C (0)
8 = B (2) ⇒ B = 4.
Put x = – 1
– 5 + 3 = A(0) + B(0) + C(-1) (-1 -1)
( -2 = C(-1)(-2) ⇒ -2 = 2C
⇒ C = -1
Question 5.
\(\frac{3-2 x}{x(x-2)(x+3)}\)
Answer:
3 – 2x = A(x – 2)(x + 3)+B(x)(x + 3)+C(x)(x – 2)
Put x = 0,we get 4
3 =A(-2)(3)+B(0)+C(0)
3 = – 6A =A = \(-\frac{1}{2}\)
Put x = 2,we get B
3 – 2(2) = A(0)+B 2(2+3)+C(0)
– 1 = 10 B = \(-\frac{1}{10}\)
Put x – 3we get C
3+6=A(0)+B(0)+C(-3)(-3 – 2)
9 = 15C ⇒ C \(-\frac{9}{15}\) \(-\frac{3}{5}\)
Question 6.
\(\frac{5 x+3}{x^{3}-x}=\frac{5 x+3}{x\left(x^{2}-1\right)}=\frac{5 x+3}{x(x-1)(x+1)}\)
Answer:
Let \(\frac{5 x+3}{x^{3}-x}=\frac{5 x+3}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}\)
5x+3A(x- 1)(x+ 1)+B(x)(x + 1)+C(x)(x – 1)
Put x = 0
3=A(-1)+B(0)+C(0)
A=-3
Put x= 1
5.1 +3 = A(0) + B(1)(1 + 1)+C(0)
8 = B(2) = B = 4.
Put x – 1
– 5+3 =A(0)+B(0)+C(-1)(-1 – 1)
– 2 = C(-1)(-2) -2 = 2C
= C=-1
∴ \(\frac{5 x+3}{x^{3}-x}=\frac{-3}{x}+\frac{4}{x-1}-\frac{1}{x+1}\)
Question 7.
\(\frac{3 x+20}{\left(x^{2}+4 x\right)(x+1)}=x^{2}+4 x=x(x+4)\)
Answer:
3x + 20 = A(x + 4) (x + 1) + B (x) . (x + 1) + C (x) (x + 4)
Put x = 0, we get A
20 = A (4) (1) + B(0) + C (0)
20 = 4A ⇒ A = 5
Put x = – 4, we get B
3 (- 4) + 20 = A(0) + B (- 4) (- 4 + 1) + C (0)
– 12 + 20 = B(-4)(-3)
II Type:- Resolve the following into Partial fractions:
Question 8.
\(\frac{2 x^{2}+16 x+29}{(x+3)^{2}(x+4)}\)
Answer:
Let
\(\frac{2 x^{2}+16 x+29}{(x+3)^{2}(x+4)}=\frac{A}{(x+3)}+\frac{B}{(x+3)^{2}}+\frac{C}{x+4}\)…………. (1)
Put x = – 4
2(-4)2 + 16 (-4) + 29 = A (- 4 + 4) (-4 + 3) + B (- 4 + 4) + C (- 4 + 3)2
2 (16)-64+ 29 = A (0) (-1) + B (0) + C(1)
32-64 + 29 = A(0) + B(0) + C(1)
3 = 1 C ⇒ C = -3
Put x = -3
2 (-3)2 + 16 (-3) + 29 = A (-3 + 4) (- 3 + 3) + B (- 3 + 4) + C (- 3 + 3)2
2 (9) – 48 + 29 = A(1)(0) + B(1) + C(0)
18 – 48 + 29 = A(0) + B(1) + C(0)
– 1 = B ⇒ B = -1
Comparing the coeff of x2
2 = A + C ⇒ 2 =A + (-3) ⇒ A = 2 + 3 = 5
∴ A = 5
Question 9.
\(\frac{3 x+5}{(x+2)^{2}(x-3)}\)
Answer:
Let
\(\frac{3 x+5}{(x+2)^{2}(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}+\frac{C}{(x-3)}\) ………………….. (1)
3x + 5 = A (x + 2) (x – 3) + B (x – 3) + C (x + 2)2
Put x = – 2
3(-2) +5 = A (- 2 + 2) (- 2 – 3) + B (- 2 – 3) + C (- 2 + 2)2
-6 + 5 = A(0) (-5) + B(-5) + C(0)
-1 = A (0) + B (- 5) + C (0)
-1 = -5B
⇒ \(B=\frac { -1 }{ -5 } \)
\(B=\frac { 1 }{ 5 } \)
Put x = 3
3 (3) + 5 = A (3 + 2) (3 – 3) + B (3 – 3) + C (3 + 2)2
9 + 4 = A (5) (0) + B (0) + C (25)
14 = A (0) + B (0) + C (25)
14 = 25C
⇒ \(C=\frac { 14 }{ 25 } \)
∴ Comparing coeffcient of x2 . we get 0 = A + C
Question 10.
\(\frac{1+2 x}{(x+2)^{2}(x-1)}\)
Answer:
1 + 2x = A (x + 2) (x – 1) + B (x – 1) + C (x + 2)2
Put x = -2
– 2 + 2 (- 2) = A (- 2 + 2) (- 2 – 1) + B (- 2 – 1) + C (- 2 + 2)2
-2 – 4 = A (0) + B(- 3) + C (0)2
-6 = B (-3)
\(B=\frac { -6 }{ -3 } \)
B = 2
Put x = 1
1+2(1) = A(1+2)(1 – 1) + B(1- 1) + C( 1 + 2)2
1 + 2 = A (0) + B (0) + C (3)2
3 = 9C
\(C=\frac {3}{9} \) \(\frac {1}{3} \)
Put x = 0
0 + 2(0) = A (0 + 2) (0 – 1) + B (0 – 1) + C (0 + 2)2
0 = A(2)(-1) + B(-1) + C(2)2
0 = -2A – B + 4C
Question 11.
\(\frac{3 x+5}{(x+2)^{2}(x-3)}\)
Answer:
3x + 5 = A (x + 2) (x – 3) + B (x – 3) + C (x + 2)2
Put x = – 2
3(- 2) + 5 = A (- 2 + 2) (- 2 – 3) + B (- 2 – 3) + C (- 2 + 2)2
– 6 + 5 = A (0) + B (-5) + C (0)
– 1 = B (-5)
– 1 = – 5B
⇒ \(B=\frac { -1 }{ -5 } \)
\(B=\frac { 1 }{ 5 } \)
Put x = 3
3 (3) + 5 = A (3 + 2) (3 – 3) + B (3 – 3) + C (3 + 2)2
9 + 5 = A (0) + B (0) + C ( 5)2
14 = C (25)
\(C=\frac { 14 }{ 25 } \)
Put x = 0
3 (0) + 5 = A(0 + 2)(0 – 3) + B(0 – 3) + C(0 + 2)2
5 = A(2)(-3) + B(-3) + C(4)
5 = -6A – 3B + 4C
Question 12.
\(\frac{3 x+5}{(x+2)^{2}(x+3)}\)
Answer:
3x + 5 = A (x + 2) (x + 3) + B (x + 3) + C (x + 2)2
Put x = -2
3 (- 2) + 5 = A (- 2 + 2) (- 2 – 3) + B (- 2 + 3) + B (- 2 + 3) + C (- 2 + 2)2
– 6 + 5 = A (0) + B (+ 1) + C (0)
-1 = B (1)
B = -1
Put x = – 3
3 (-3) + 5 = A (3 + 2) (- 3 + 3) + B (- 3 + 3) + C (- 3 + 2)2 -9 + 5
= A (0) + B (0) + C (- 1 )2
– 4 = C (1)
\(C=\frac { 1 }{ 4 } \)
= – 4 = C (1)
⇒ \(C=\frac {-1 }{ 4 } \)
Put x = 0
3 (0) + 5 = A(0 + 2)(0 + 3) + B(0 + 3) + C(0 + 2)2
5 = A (2) (+ 3) + B (+ 3) + C (4)
5 = 6A + 3B + 4C
5 = 6 A -3 + 14
8 – 14 = 6A
6 A = – 6
A = – 1
Question 13.
\(\frac{x-3}{(x-1)\left(x^{2}-4\right)}\)
Consider (x – 1) (x2 – 4)
(x – 1) (x2 – 22)
(x- 1)(x + 2) (x-2)
Answer:
x – 3 = A (x + 2) (x – 2) + B (x – 1) (x – 2) + C (x – 1) (x + 2)
Put x = 1
1 – 3 = A (1 + 2) (1 -2) + B (1 – 1) (1 -2) + C (1 – 1)(1 + 2)
-2 = A (3) (- 1) + B (0) + C (0)
-2 = -3A + B (0) + C (0)
-2 = -3 A
\(A=\frac {2}{3} \)
Put x = 2
2 – 3 = A(2 + 2) (2 – 2) + B (2 – 1) (2 – 2) + C (2 – 1)(2 + 2)
– 1 = A (0) + B (0) + C (1) (4)
-1 = C (4)
\(C=\frac {-1}{4} \)
Put x = – 2
-2 – 3 = A (-2+ 2) (-2 – 2) +B (-2 – 1) (-2 – 2) +C (-2 – 1)(-2 + 2)
-5 = A (0) + B (- 3) (- 4) + C (0)
– 5 = 12B
⇒ \(B=\frac {-5}{12} \)
Question 14.
Resolve \(\frac{2 x^{2}+16 x+29}{(x+3)^{2}(x+4)}\) into partial fraction
Answer:
2x2+ 16x + 29 = A(x + 3)(x + 4>+B(x + 4) + C(x + 3)2
Put x = – 3
2 (- 3)2 + 16 (- 3) + 29 = A (- 3 + 3) (- 3 + 4) + B (- 3 + 4) + C (- 3 + 3)2
18 – 48 + 29 = A(0) + B(1) + C(0)
-1 = B
⇒ B = – 1
Put x = – 4
2 (-4)2 + 16 (-4) + 29 = A (-4 + 3) (-4 + 4) + B (-4 + 4) + C (-4 + 3)2
32 – 64 + 29 = A (0) + B (0) + C (- 1)2
-3 = C
⇒ C = -3
Put x = 0
2 (0)2 + 16 (0) + 29 = A (0 + 3) (0 + 4) + B (0 + 4) + C (0 + 3)2
29 = A (3) (4) + B (4) + C (3)2 29 = 12A + 4B + 9C
29 =12A + 4(-1) + 9(-3)
29 = 12A – 4 – 27
12A-29 + 4 + 27
12A = 60
A = \(\frac{60}{12}\) ⇒ A = 5
Question 15.
Improper fraction:
Resolve \(\frac{x^{2}-2}{x^{2}+x-12}\) into Partial Fraction
Answer:
To convert Improper to proper.
Multiply both sides by (x + 4) (x – 3)
Then we get (10-x) = A(x – 3) + B (x + 4)
Put x = – 4
10 + 4 = A (-4 – 3)
14 = A (- 7)
⇒ \(A=\frac{14}{-7}\)
⇒ A = -2
Put B = 3
10 – 3 = B(3 + 4)
7 = 7B
⇒ \(B=\frac{7}{7}\)
⇒ B = 1
Putting these value of A and B in (2) we get
Question 16.
\(\frac{2 x^{2}+3 x+2}{x^{2}-x-2}\)
Answer:
This is an Improper fraction.